Super-Lattice Structure and Phase Evolution of Pb(Lu0.5Nb0.5)O3-PbTiO3 Single Crystal with Low PbTiO3
نویسندگان
چکیده
The phase diagram of the Pb(Lu0.5Nb0.5)O3-PbTiO3 (PLN-PT) binary system was previously reported based on XRD and dielectric measurements results. Unusually, the Curie temperature of PLN-PT with low PT obtained from the phase diagram is much lower than that of PLN and PT end members, which is different from others, such as PZT. Therefore, the complex structure of PLN-PT with low PT is desired to be studied. In this work, PLN-PT single crystals with low PT were grown for the study of their super-lattice structure and phase evolution. The super-lattice reflections were identified by X-ray diffraction. Domains and their evolution by heating from room temperature to 150 ◦C were observed under a polarized light microscope. The phase transition from the ferroelectric phase to the paraelectric phase was determined by dielectric spectra and polarized light microscopy. A precursor/intermediate phase exhibiting pinched hysteresis loops was displayed above the Curie temperature, which originates from some polar region embedded in the non-polar matrix. The coexistence of the ferroelectric and antiferroelectric domains leads to peculiarities of the phase transitions, such as a lower Curie temperature compared with PLN and PT. The studies of the phase evolution of PLN-PT with low PT single crystal is a supplementary amendment of the PLN-PT phase diagram as previously reported.
منابع مشابه
Glory of piezoelectric perovskites
This article reviews the history of piezoelectric perovskites and forecasts future development trends, including Uchino's discoveries such as the Pb(Mg1/3Nb2/3)O3-PbTiO3 electrostrictor, Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal, (Pb, La)(Zr, Ti)O3 photostriction, and Pb(Zr, Ti)O3-Terfenol magnetoelectric composites. We discuss five key trends in the development of piezomaterials: performance to r...
متن کاملPredicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations
Using data obtained from first-principles calculations, we show that the position of the morphotropic phase boundary MPB and transition temperature at MPB in ferroelectric perovskite solutions can be predicted with quantitative accuracy from the properties of the constituent cations. We find that the mole fraction of PbTiO3 at MPB in Pb B B O3–PbTiO3, BiBO3–PbTiO3, and Bi B B O3–PbTiO3 exhibits...
متن کاملPoling field versus piezoelectric property for [001] c oriented 91%Pb(Zn1/3Nb2/3)O3-9%PbTiO3 single crystals.
Electromechanical property measurements and microstructure observations using optical microscopy were performed on a [001] c oriented k33 resonator made of 91%Pb(Zn1/3Nb2/3)O3-9%PbTiO3 single crystal, which was polarized under different electric fields. At room temperature, when the poling field is 1100 V/mm, the electromechanical coupling factor k33 is 0.90 and piezoelectric coefficient d33 is...
متن کاملOrientation dependence of electromechanical properties of relaxor based ferroelectric single crystals.
The orientation dependence of electromechanical properties of relaxor based ferroelectric single crystals Pb(Zn1/3Nb2/3)O3-(6-7)%PbTiO3 and Pb(Mg1/3Nb2/3)O3-33%PbTiO3 has been calculated by coordinate transformation. Different from previous studies, the optimum cutting orientations have been predicted in terms of their piezoelectric responses in the corresponding crystal planes. The calculation...
متن کاملPressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3.
We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition sequence induced by pressure, and a morphotropic phase boundary in a pure compound using first-principles calculations. Huge dielectric and piezoelectric coupling constants occur in the transition regions, comparable to those observed in the new complex single-crystal solid-solution piezoelectrics such as P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018